
www.embedded-world.eu

 Continuous Integration and Test

from Module Level to Virtual System Level

Johannes Foufas, Martin Andreasson

Volvo Car Corporation

Gothenburg, Sweden

Michael Hartmann, Andreas Junghanns
QTronic GmbH

Berlin, Germany

Abstract— Software-in-the-Loop (SiL) is a test strategic sweet

spot between Model-in-the-Loop (MiL) and Hardware-in-the-

Loop (HiL) tests. We show in this paper how to use automatic C-

code instrumentation to harness the superior properties of SiL

technology for Module Tests even when the C-code is generated

in a few, large controller functions combining the modules to be

tested.

Furthermore we show how to re-use module test

specifications in integration and system tests by separating the

test criteria from the test stimulus. We call these test criteria

requirements watchers and define them as system invariants.

This powerful technique, combined with efficiently handling

large numbers of controller variants by annotating watchers and

scripts, allows the automatic validation of hundreds of

requirements in module, integration and system tests improving

the software quality dramatically very early in the software

development process.

Last but not least, we extend the idea of continuous

integration to continuous validation to leverage all of the above to

reach high levels of software maturity very early in the software

development process. That will also benefit later test phases – like

HiL system and system integration tests – by dramatically

reducing commissioning efforts.

Keywords— Software-in-the-Loop; continuous integration

I. MOTIVATION AND CHALLENGES

Engineers are under pressure to deliver improvements at a
growing pace while satisfying an increasing amount of
regulatory pressures concerning performance, safety, reliability
and ecology. The combination of more functionality and
smaller turnaround times between new versions requires new
methods of test and validation to keep software quality up to
par. While traditional testing on the target hardware maintains
a role in integration testing and satisfying strict safety norms, it
is too slow, resource intensive and late with feedback for
earlier phases of the control-software development cycle to
increase robustness in a meaningful way.

Common Unit/Module test approaches rely on MiL which
is prone to failure when looking for certain classes of bugs. SiL
simulation can alleviate these concerns by providing a testable
system that is much closer to the C-code reality: using the
generated C-code, the target integer variable scaling and the
(variant-coded) parameter values for the target system, often
even including parts of the basic-software and communication
stacks [1,2]. And despite being so close to reality, SiL is still

offering all the strong points of MiL: cheap and early available
execution platform (PC), determinism, flexibility when
integrating into different simulations tools for example as
FMUs, fully accessible and debuggable internals, easy
automation for all system variants and many more benefits.

But moving to SiL is not without challenges. First and most
obviously, hardware-dependent parts of the control software
cannot be included and suitable SiL-abstractions have to
replace the missing code. Recent, standardized software
architectures, like AUTOSAR or ASAM MDX, ease such
replacement and IO connectivity considerably as standard APIs
can be provided by the SiL platform or standard description
formats can be used to generate the connection layers like SiL-
AUTOSAR-RTE generation from .arxml files. Even for pre-
AUTOSAR ECUs this task can be handled quite efficiently
these days: A limited number of tier-1-suppliers produced a
limited number of vendor-dependent RTOS (inspired)
architectures that allow for high-levels of reuse[3].

Another challenge is dealing with generated C-code for
module test. The generated code is optimized for target use and
may fuse many software modules into one large C-function
(task). Stimulating individual software modules from the
outside is not possible. Regenerating individual modules is out
of the question, because changing the code generation process
would lead to different C-code and therefore defeating the
purpose of SiL: to test exactly the code that will be compiled
for target without changes. The solution: we will instrument the
generated C-code to gain control over all input variables to the
module(s) under test.

Ideally one would like to reuse tests from MiL to SiL to
HiL. However, the different levels of simulation detail,
restrictions on measurement bandwidth, availability of the
execution platforms, setup cost for different variants,…
requires a more sophisticated test strategy than “simple reuse”.
Focusing on the strength of each platform and running each
test as early as possible will frontload, as one example,
application layer function and integration tests to SiL, while
leaving hardware related diagnostic tests on the HiL platform.
And optimizing control strategies as early as possible will
move these tasks to MiL simulations. Re-using test definitions
is therefore limited by the different test goals and platform-
related restrictions.

However, module and system-level tests can still share the
same requirements, if not the same test focus. The solution to
high levels of reuse for test specifications is separating the

www.embedded-world.eu

implementation of the requirements tests from the stimulus.
While classic test automation combines test stimulus and
requirement tests into the same script, we define requirement
watchers as formal, stimulus and system-state independent
invariants: conditions that must always hold. Engineers need to
spend more time and care in writing such requirement
watchers, but the payoff justifies this extra effort: Requirement
watchers can be tested with any kind of stimulus be it scripted,
field measurements, short test vectors, hour-long load-
collective simulations or auto-generated test stimulus (e.g. by
TestWeaver)[4]. Here we will show how to reuse module
requirements defined for module testing in system-level testing
when written as requirement watchers.

Increasing number of variants of control systems requires
special measures during test and validation to reduce manual
matching of test cases to variants of the control software. We
show how annotating requirement watchers and stimuli with
filter properties enables automatic selection of relevant test

Continuous Integration is a state-of-the-art method to detect
integration problems. Combining CI with more than
rudimentary tests is difficult if the target binary is the test
object. Using SiL as execution platform allows high levels of
automation for large numbers of tests because they can run on
the same platform as the build process: the PC. Extending the
idea of Continuous Integration (nightly builds) to Continuous
Validation (nightly test) improves early detection of large
classes of software problems considerably.

II. TESTING AT VOLVO CARS CORPORATION

At Volvo Cars Corporation (VCC), SiL testing is at the
core of a new Continuous Integration strategy. Through
increasing the frequency of integration points and
corresponding tests, control software reaches a higher level of
maturity when final acceptance tests are carried out close to
production. In order to achieve this, a large number of tests
need to be defined and used throughout the development
process.

One concern so far has been the incompatibility of test
cases and stimuli between MiL and SiL setups. The structure
that is designed by a developer in modeling tools is often
disregarded during code generation. This means testing is
limited to module level, with modules growing in scope over
time. Developers on the other hand design around smaller units
represented through subsystems.

Fig. 1: Basic module with subfunctions

The difficulty in test design for large models can be
illustrated by the simple example in Figure 1. Subfunction A is
defined by a set of requirements that define the behavior of the
outputs (y) as a function of the intermediate signals (m).

Historically, testing these requirements in anything other than
MiL simulation would require the engineer to invert
Subfunction B in order to design the correct set of inputs (u)
for the test.

Fig. 2: Function requiring transient stimuli

For more complex modules, this approach is very costly

and error-prone. As loops inside functions and state diagrams
are introduced, tests for simple functionality require
increasingly complicated transient stimuli.

We aim to present an instrumentation approach that offers
the opportunity to bypass parts of a function and allows
developers to define stimuli and test criteria around arbitrarily
small subfunctions of a module.

Fig. 3: System under test in with bypassing: Test stimuli can be definded as

m(t)

The requirements that are defined using this process shall

remain independent of the stimulus and usable throughout all
levels of testing, up to integration and robustness tests.

III. INSTRUMENTATION APPROACH

 Modelling tools like Simulink allow developers to
structure their models into subsystems which can be used like
atomic blocks. The subsystem can be copied or moved freely
across models and can be tested independently in MiL. When
generating code from a model using TargetLink, the complete
model is represented by a single C method. Statements that are
generated from blocks within a subsystem are spread across the
entire compilation unit. This means a subsystem cannot be
executed on its own, preventing any kind of meaningful unit
testing. To remove this limitation from SiL tests, we analyze
the resulting C-code and inject bypass opportunities wherever a
measurable signal is written.

The injected code remains inactive unless the source is
compiled for a SiL target and the user enables bypassing for

www.embedded-world.eu

the respective variable. This way, MISRA compliance of
production software is ensured even if the instrumented code
makes it into release builds on accident.

As code generators tend to use temporary, local variables
where signals are not specifically made measurable, further
analysis of the generated code is necessary. In cases where
such a temporary variable is always equal to a measurable
signal, it has to be set to the correct value as well. This
specifically applies to signals transcending subsystem borders,
which can be represented by two different variables in code.

Fig. 4: Instrumentation of temporary variables

State Machines can by bypassed entirely so no transitions
are necessary to provide the system under test with the correct
state and/or corresponding flags.

After the code is instrumented, the virtual basic software is
automatically set up with regards to task scheduling and
supplier-dependent modifications. Compilation results in a
virtual ECU containing the entire OEM-part of the control
software which can be coupled with a plant model and/or other
ECUs for system-level simulation.

Without recompilation, engineers can trim the V-ECU to fit
their use-case. Depending on a specification file provided by
the user, the Virtual ECU will reconfigure its scheduler to only
execute a subset of the included functions. The same
specification can be extended by a detailed interface
specification listing the ports of a subsystem. If this
specification is present, all bypasses on the input side are
activated and the variables are overwritten by stimuli during
simulation.

IV. DESIGN OF STIMULUS-INDEPENDENT TESTS

The instrumentation method described reduces the effort in
test design significantly. Unit-Tests of small subfunctions can
be created through traditional scripting and deployed as part of
an automated test framework. While this method can produce
comprehensive results in regards to verification and coverage,
it relies heavily on developers being able to foresee all possible
problems.

During the specification phase, requirements are written in
a broad scope. Often a requirement will define a certain
behavior that shall be true under certain conditions. In essence:

Condition A => Behavior B

Defining test cases around such requirements would be
difficult, especially if the condition contains several continuous
signals. The widespread approach of testing by creating a

stimulus and checking for a specific reaction fails to capture a
large number of possible scenarios as engineering hours and
therefore the number of defined test cases are limited.

In addition, a stimulus-reaction based test becomes obsolete
once the object under test is integrated into a system, as the
previously defined stimulus often cannot be reproduced due to
its artificial nature.

Side effects that appear based on the interaction of several
components cannot be tested. A developer might cover all the
expected combinations of outputs from another module or sub-
function, but faulty signals as result of a bug in this module
might not be considered.

TestWeaver by QTronic provides the means to define
requirements in a way that closely resembles the original
specification. The test for a requirement is defined by
precondition and expected behavior instead of stimulus and
reaction.

The definition of a requirement watcher entails conditions
to activate the instrument and the criteria to be tested. A
watcher intended to test the simple example above would
remain inactive until Condition A is met and once becoming
active check for the Behavior B.

For more complex cases additional options such as
tolerance times can be specified. Inverse usage, i.e. the
specification of unwanted behavior is also supported.

Each requirement can be tested at every point in time
during a simulation. Requirements defined at subsystem level
remain valid in system context and vice versa and can be tested
in regardless of scope. As requirement watchers do not require
write-access to any signals, the definitions implemented for
unit tests are still applicable in larger contexts where the code
instrumentation might be omitted. Module and integration tests
can thus be executed on final production code.

Fig 5: Requirement watchers can be reused throughout and refined based upon

different scopes. All requirements are tested against at every point. Stimuli are

selected from a pool where applicable.

Code coverage is measured with Testwell’s CTC++. The
decoupled requirements described above provide the option to
use any input vector to increase coverage. Any scripts or
measurements that are available can be added to the stimulus
pool and simulated. This way, high code coverage can be

www.embedded-world.eu

achieved without specifically designing additional tests. The
requirement definitions can also be reused with TestWeaver’s
scenario generation for focused explorative tests, further
increasing coverage and robustness.

V. CONTINUOUS INTEGRATION AND VERIFICATION

At VCC Powertrain, code is deployed to a Jenkins-based
continuous integration system. Pipelines are defined to
automatically build virtual ECUs and run applicable tests.
Commits by function developers into the common model base
trigger the execution of interface verification and module tests
as well as integration tests relevant to the Module in SiL and
HiL.

Fig 6: A typical Jenkins Pipeline.

As a result, function developers get quick and reliable
feedback about the behavior of their models in the context of a
wider system. To verify and keep track of code quality and
open issues, the full test suite is executed nightly.

VI. CONCLUSION

In this paper we present a number of critical building
blocks necessary to improve software maturity early in the
software development process. Software-in-the-Loop (SiL)
allows test execution in a Continuous Validation process of the
target C-code. Instrumentation of the target C-code allows
manipulation of any input of the software module enabling
module tests even if target code generation merges many
modules into larger C-functions (tasks).

When expressing module and system requirements as
requirement watchers we can reuse these more easily in most
of the test stages more than compensating for the extra effort
defining requirements as invariants.

Annotating requirement watchers and stimulation scripts
with variant information allows automatic filtering to matching
ECU configurations. This way, a single test database can be
used to handle a multitude of variants and at the same time
ensuring all relevant requirements will be tested on all variants
during all test stimuli reaching code-coverage and requirement-
coverage goals more quickly and more easily than with
traditional test methods.

As the virtual ECU can be reconfigured within Silver to
include or exclude any function in the entire application
software, build times are kept to a minimum.

In order to reduce the amount of work needed to design
tests even further, closed loop simulations including detailed
plant models will be integrated into the VCC CI and CT
toolchain. Reusing the existing requirement watchers,
TestWeaver’s scenario generation will be employed in order to
increase robustness and test coverage even further.

[1] Brückmann, Strenkert, Keller, Wiesner, Junghanns: Model-based

Development of a Dual-Clutch Transmission using Rapid Prototyping
and SiL. International VDI Congress Transmissions in Vehicles 2009,
30.06.-01-07.2009, Friedrichshafen, Germany

[2] Rui Gaspar, Benno Wiesner, Gunther Bauer: Virtualizing the TCU of
BMW's 8 speed transmission, 10th Symposium on Automotive
Powertrain Control Systems, 11. - 12.09.2014, Berlin, Germany

[3] René Linssen, Frank Uphaus, Jakob Maus: Software-in-the-Loop at the
junction of software development and drivability calibration, 16th

Stuttgart International Symposium (FKFS), 15. - 16.03.2016, Stuttgart,
Germany

[4] Mugur Tatar: Enhancing the test and validation of complex systems with
automated search for critical situations, VDA Automotive SYS
Conference, 06. - 08.07.2016, Berlin, Germany

